A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics
نویسندگان
چکیده
This work is concerned with the development and study of a minimum residual norm subspace method based on the Generalized Conjugate Residual method with inner Orthogonalization (GCRO) method that allows flexible preconditioning and deflated restarting for the solution of non-symmetric or non-Hermitian linear systems. First we recall the main features of Flexible Generalized Minimum Residual with deflated restarting (FGMRES-DR), a recently proposed algorithm of the same family but based on the GMRES method. Next we introduce the new inner-outer subspace method named FGCRO-DR. A theoretical comparison of both algorithms is then made in the case of flexible preconditioning. It is proved that FGCRO-DR and FGMRES-DR are algebraically equivalent if a collinearity condition is satisfied. While being nearly as expensive as FGMRES-DR in terms of computational operations per cycle, FGCRO-DR offers the additional advantage to be suitable for the solution of sequences of slowly changing linear systems (where both the matrix and right-hand side can change) through subspace recycling. Numerical experiments on the solution of multidimensional elliptic partial differential equations show the efficiency of FGCRO-DR when solving sequences of linear systems.
منابع مشابه
Flexible Variants of Block Restarted GMRES Methods with Application to Geophysics
In a wide number of applications in computational science and engineering the solution of large linear systems of equations with several right-hand sides given at once is required. Direct methods based on Gaussian elimination are known to be especially appealing in that setting. Nevertheless when the dimension of the problem is very large, preconditioned block Krylov space solvers are often con...
متن کاملProjected non-stationary simultaneous iterative methods
In this paper, we study Projected non-stationary Simultaneous It-erative Reconstruction Techniques (P-SIRT). Based on algorithmic op-erators, convergence result are adjusted with Opial’s Theorem. The advantages of P-SIRT are demonstrated on examples taken from to-mographic imaging.
متن کامل2D DC resistivity forward modeling based on the integral equation method and a comparison with the RES2DMOD results
A 2D forward modeling code for DC resistivity is developed based on the integral equation (IE) method. Here, a linear relation between model parameters and apparent resistivity values is proposed, although the resistivity modeling is generally a nonlinear problem. Two synthetic cases are considered for the numerical calculations and the results derived from IE code are compared with the RES2DMO...
متن کاملGeneralized iterative methods for solving double saddle point problem
In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...
متن کاملDevelopments in Preconditioned Iterative Methods with Application to Glacial Isostatic Adjustment Mo- dels
This study examines the block lower-triangular preconditioner with element-wise Schur complement as the lower diagonal block applied on matrices arising from an application in geophysics. The element-wise Schur complement is a special approximation of the exact Schur complement that can be constructed in the finite element framework. The preconditioner, the exact Schur complement and the elemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013